
Performance basics for IBM® Lotus® Notes®
developers

Andre Guirard
Technical Solution Architect, Lotus Notes
IBM Software Group, WPLC
Minneapolis, MN

May 2008

© Copyright International Business Machines Corporation 2008. All rights reserved.

This white paper addresses the most important and most serious factors affecting IBM®
Lotus® Notes® and Domino® application performance. It is intended for developers of
Notes client applications, to help them maximize performance by identifying problem
areas and offering solutions.

It is assumed that you already know how to create Notes design elements and how to
set options on forms, fields, views, columns, etc. There's material here for developers of
all levels of expertise.

Table of contents
1 Introduction.. 2
2 General principles .. 2
3 Database-level performance considerations .. 4
4 Formula performance... 5

4.1 @DbLookup and @DbColumn .. 6
5 Form design ... 9

5.1 Don't use Computed fields if Computed for Display works..................................... 9
5.2 Hundreds of fields... 9
5.3 Excessive graphics .. 10
5.4 Stored forms.. 11
5.5 Automatically refresh fields.. 11
5.6 Too many shared design elements .. 11

6 Views ... 12
6.1 @Now or @Today in views ... 12
6.2 Unnecessary views.. 13
6.3 Private views... 14
6.4 Unnecessary re-sorts ... 14
6.5 Unnecessary columns.. 15
6.6 Overly complex formulas ... 15
6.7 Overuse of multiple categorization... 15
6.8 Overzealous indexing.. 16
6.9 Reader fields ... 17
6.10 Private on first use .. 17

mailto:Andre_Guirard@us.ibm.com

7 Code ... 18
7.1 GetNthDocument .. 18
7.2 Too much action code on a form or view ... 18
7.3 Too many script libraries .. 19
7.4 ComputeWithForm ... 19
7.5 Auto-update views .. 19
7.6 Failure to use efficient collection-based methods... 19
7.7 Repeating expensive operations.. 19
7.8 Saving documents that have not changed ... 20
7.9 Ways of searching for documents... 20
7.10 Deleting unused documents from cache ... 21
7.11 More efficient loops, assignments, etc.. 21
7.12 Using the LC LSX .. 22

8 Testing.. 22
9 Use Profile documents ... 22
10 Conclusion ... 22
11 Resources ... 23
12 About the author .. 23
13 Acknowledgements.. 24

1 Introduction
It's easy to develop simple applications in Lotus Notes and, if you have a few users and
not too many documents, you're unlikely to have performance issues. However, if your
application is successful, you may accumulate lots of users and lots of data. If you
haven't designed it with performance in mind, your application will slow to a crawl.

This white paper discusses the main factors affecting Notes/Domino® application
performance and explains what you, as a developer, can do to maximize performance.
This is not an exhaustive guide; rather, we focus on the design problems that are most
common and most serious.

The intent of this paper is to help you identify problem areas and point you toward
solutions, mainly for Notes client applications. Web applications have largely the same
design issues, but they have some additional performance concerns and opportunities
that are addressed in the Appendices Group C of the IBM Redbooks publication,
Performance Considerations for Domino Applications, and in the IBM Business Partner
document, Performance Engineering Notes/Domino Applications.

2 General principles
The following factors have the most impact on application performance generally:

• Number and complexity of views. Remove unused views or merge similar views.

Where possible, use a re-sortable column to combine views that contain the same
documents with different sorting. Remove unneeded columns, and simplify selection
and view column formulas. Check for “server private” and other views to which you
might not have access.

 2

http://www.redbooks.ibm.com/abstracts/sg245602.html?Open
http://www.martinscott.com/struturo.nsf/ID/tech_articles_perf_engr

• Use of @Today and @Now in view selection formulas or column formulas.

Avoid if possible. Refer to the IBM Support Web site Techdoc, Time/Date views in
Notes: What are the options?; also see the Views section of this article below.

• Number of documents. More documents make views slower to open. Consider

archiving old documents or combining “main and response” documents into a single
document. For instance, if your main document is an “order”, it might be a bad idea to
make a separate document for each “line item” on the order. Lotus Notes is not a
relational database, but a document-oriented database.

• Number of summary fields stored in the documents. Every field that's not rich text

is called a “summary” field (though this is a slight oversimplification). Documents with
more summary fields take more time to index into views (by up to about 30% if there
are hundreds of fields). This is true even if the fields are not used in views.
Sometimes using fewer documents requires more fields and vice versa; making the
right choice for optimal performance requires thought.

• Complexity of forms. Attempt to limit forms to the number of fields you actually
need. Long forms take substantially more time to open, refresh, and save (as well as
contributing more fields that the view indexer must deal with).

• Modifying documents. Modifying documents unnecessarily slows view indexing by

giving the indexer more work to do, and it also slows replication and full-text indexing.

• Number of deleted documents. When a document is deleted, it leaves behind a

marker called a “deletion stub.” The replication program needs this to decide whether
to delete the same document from another replica, or copy the “missing” document to
this replica. Deletion stubs eventually age out (120 days is the default), so for a
database with a normal number of deletions, you don't accumulate enough to cause a
problem.

However, we've seen applications in which there are many times more deletion stubs
than documents. This usually occurs when there's a nightly agent that deletes every
document and then creates all new documents from some outside data source. Don't
do this. More advanced algorithms are available that compare documents with your
source data and determine which ones need to be updated or deleted. See this Lotus
Sandbox download for more information.

• Reader fields. If you need to use reader fields, then you need to – there's no other
way to get that level of security. But be aware of the performance impact in views,
especially if the user has access to only a few documents out of many. The Views
section of this paper includes some tips for minimizing the impact, as does the
developerWorks article, Lotus Notes/Domino 7 application performance: Part 2:
Optimizing database views.

• Number of users. A large number of users on a server drags down performance of

the application (and of the server). And, if the application already had marginal
performance, adding users makes it much worse. Correcting design issues can help,
but you might also create replicas on other servers, especially clustered servers, or
encourage users to create local replicas, which are much faster.

 3

http://www-1.ibm.com/support/docview.wss?uid=swg27003557
http://www-1.ibm.com/support/docview.wss?uid=swg27003557
http://www-10.lotus.com/ldd/sandbox.nsf/ecc552f1ab6e46e4852568a90055c4cd/783ff1dd8e1ee7f285256e120050e252?OpenDocument
http://www-10.lotus.com/ldd/sandbox.nsf/ecc552f1ab6e46e4852568a90055c4cd/783ff1dd8e1ee7f285256e120050e252?OpenDocument
http://www.ibm.com/developerworks/lotus/library/notes7-application-performance2/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/notes7-application-performance2/?S_TACT=105AGX13&S_CMP=LP

3 Database-level performance considerations
Refer to the Domino Designer help document “Properties that improve database
performance” for a list of database options that you can adjust to tweak performance. In
most cases these options trade performance for functionality; hence, if you don't need
the functionality for a specific application, disable it.

The options that are likely to have the most noticeable effect are:

• Don't maintain unread marks.
• Don't maintain the "Accessed (In this file)" document property. If you “don't

maintain,” you can't tell when a document was last read. This information is handy
in archiving documents that haven't been read for a while.

• Disable specialized response hierarchy information. If you disable this, you
won't be able to use @AllDescendants or @AllResponses, which are occasionally
useful in view selection formulas and replication formulas.

• Disable transaction logging. The effect of this on performance depends on how
the administrator has set it up on the server and on the number of users. If there
are many users, using transaction logging may be faster than not. Try it both ways
and measure. Transaction logs are used for recovery.

• Optimize Document Table Map: This is most useful in situations in which an
application contains roughly equal numbers of different types of documents, and
most views only display one type (for example, SELECT Form = “xyz” & ...). If the
view selection formula is written in just this way, with the form test first, view
indexing is faster because it can immediately eliminate from consideration every
document that doesn't use that form.

Using NSFDB2 (storing your Domino data in a DB2® database) does not help
performance and, in fact, is usually a bit slower than a traditional NSF file. The goal of
NSFDB2 is adding functionality, not boosting performance.

A full-text index can take up a lot of room on disk, but it's usually worth it. You can
leverage this to do faster searches in agents, and if you don't have the index, users are
forced to use slower searching methods that tie up the server and take longer to yield
results.

NOTE: A new database property in Notes version 8.0 lets you turn off "full-text"
searching of a database if isn't full-text indexed. Generally, this is a good idea even if
you have a full-text index; it guarantees that if the index is deleted accidentally, users
will see a message rather than just suddenly having poor performance with no
explanation.

Another thing you can do at the database level is not in the property box, but in the ACL
dialog box. Limiting users' access to create personal views and folders reduces the load
on the server (see figure 1).

 4

Figure 1. ACL dialog box

If you uncheck the “Create personal folders/views box,” users will still be able to create
private views, but the views will be stored locally in their desktop file, instead of on the
server, so they will not affect performance of the application as much.

Desktop private views do have performance implications because, to index them, users
must pull data from the server in real time. So heavy use of desktop private views can
also bog down a server. For this reason, avoid automatically creating personal views for
the user with the “Private on first use” view option. (This is covered in more detail below.)

4 Formula performance
Most @Functions are fairly fast, but there are a few that take longer to evaluate. Be
aware of these, and use them wisely:

• @Contains isn't a very expensive function, but it's often used to test whether a list

contains an exact value, which is both inefficient and incorrect. For instance, the
expression @Contains(Cities; “Lansing”) returns True if Cities contains the value
“East Lansing”. If this is what you want, fine; but if you were actually looking for
entries that contain the exact value “Lansing”, use =, *=, or @IsMember instead.
These are faster because they don't need to scan the whole string if the first
characters don't match.

• @For and @While can often be replaced with the more efficient @Transform, or with

other functions that operate on the whole list at once.

• @Unique: Since this function must compare each value of a list with each other

value, the execution time is proportional to the square of the number of items in the
list. It's better if you can retrieve a list whose values are already unique. More about
this later.

• @NameLookup is similar to @DbLookup, but for directory information only.

• @DbLookup, @DbColumn: Overuse and misuse of these functions accounts for the

vast majority of delays on forms, so they warrant a section of their own (below).

 5

Looping functions in macro language are often used unnecessarily. Although it doesn't
state this in the Domino Designer help docs, nearly all the macro functions that accept
string arguments can also operate on a list. For instance, @Left(x; “,”), where x is a list,
returns a list in which each element has been “lefted”.

NOTE: In the past, the functions @UserRoles and @UserNamesList caused a big
performance hit, but beginning with Lotus Notes 6.0, the results of these functions are
cached.

4.1 @DbLookup and @DbColumn
Three main factors that affect performance of @DbLookup and @DbColumn are
whether:

• you use the cache
• the view you're looking up to is efficient
• you use them unnecessarily

4.1.1 Using cache
Many developers overuse the “NoCache” option, particularly in keyword formulas. It's
easy to see how this can happen, because during development and initial testing the
keywords tend to be edited often, and NoCache “makes them work right.”

However, once in use, an application usually doesn't have keywords edited daily. Some
delay before new values are available to users is an acceptable tradeoff for better
performance. Use NoCache only when really necessary.

There are three caching options:

• “Cache” (the default) refers only to the view the first time you do a particular lookup
during an application session, and it remembers that lookup result for use
thereafter until you exit the application.

• “NoCache” bypasses the cache and always goes to the view. If there is a cached
value for the same lookup, it is not updated.

• “ReCache”, the forgotten option, always goes to the view, but it also updates the
cache with the lookup value. By using ReCache, you can deliberately update the
cache at specific times – say, when a document is saved to which the lookup
refers. At other times you can use the cached value, because you know that the
value is at least up to date with the information entered by this user.

4.1.2 Choosing the correct view for a lookup
Sometimes a view that is otherwise efficient is still not the best choice for @Db
functions. For instance,
@Unique(@DbColumn(“”:“NoCache”; “”:“”; “InvoicesByCompany”; 1)) has multiple
problems:

• It uses NoCache where it probably doesn't need to. You don't add a company
every day, and when you do, you can use the “ReCache” option in the Postsave of
the Invoice form to make the new name immediately available.

• The current database is specified with the expression “”:“”. Instead, use “”

because “”:“” not only has more confusing punctuation, but also it’s a bit slower to
evaluate.

 6

• Don't look up a list that contains duplicate values and then use @Unique to

remove the duplicates. Instead, do your lookup to a view column whose values are
already unique, because they come from a categorized column.

This last point is especially important, because a column lookup that works fine with 100
documents of test data can degrade very quickly, once you start to use the application in
practice and get thousands of documents. Especially when the application is used on a
server, it takes time to send the complete contents of a view column over the network to
the user's workstation. Reading already-unique values from a view is much faster.

NOTE: The “Generate unique keys in index” option might look like an alternative to
categorized columns for obtaining a list of unique values, but it has drawbacks that
make it unsuitable for such use.

It's also a bad idea to look up to a view that takes a long time to index, and specifically to
a view that uses @Today or @Now in its selection formula or in a column formula. If you
just need to look up documents for a particular date, then instead of using @DbColumn
to a view that contains only those documents, use @DbLookup to a view of all
documents sorted by date and provide the date as a lookup key.

4.1. 3 Avoiding repeated lookups
Using @Db functions unnecessarily can occur in several ways. Here are a few common
ones:

Repeated in a formula
@If(@IsError(@DbLookup(“”: “NoCache”; “”; “SomeView”; CustID; 3);
 “”;
 @DbLookup(“”: “NoCache”; “”; “SomeView”; CustID; 3))

Not only does this formula use NoCache where it probably doesn’t need to, but it looks
up twice where it only needs to do it once. Here are two alternatives:

_tmp := @DbLookup(“”; “”; “SomeView”; CustID; 3);
@If(@IsError(_tmp); “”; _tmp)

or

@DbLookup(“”; “”; “SomeView”; CustID; 3; [FailSilent])

Unnecessary keyword lookup in read mode
When a document is opened for viewing, for certain types of keyword fields the Notes
client doesn't need to know the list of choices. Obvious exceptions are checkbox and
radio button fields, in which all the choices are displayed even in read mode, and
anything that uses keyword synonyms (“Display text|value”) since the document only
stores “value,” but the form must know to display “Display text.”

In other cases, though, write the keyword formula to defer the lookup until you actually
need the list of choices:

_t := @If(@IsDocBeingEdited; @DbColumn(""; ""; "Customers"; 1);
@Return(@Unavailable));

 7

@If(@IsError(_t); ""; _t)

By returning @Unavailable when the document is in read mode, the formula tells the
form to ask again if it needs the list of choices later. That will occur when the user
changes to edit mode and the cursor enters that field.

So not only do you avoid doing lookups when the user is merely viewing a document,
but you also spread out the delay over editing the document; eight half-second delays
are a lot less annoying than one four-second delay. And if the user doesn't put the cursor
in that field, they won't need to wait for the lookup at all.

Several lookups where one lookup would do
Suppose you have a customer ID stored in your “invoice” document, and you want to
use that ID to look up and display the customer name, their address, and their
purchasing contact name. So you have several Computed for Display fields on the form,
each one containing a formula that uses @DbLookup(“”; “”; “CompanyByID”; CustID; x)
where x is a column number or field name.

It's more efficient to have a single column that contains all the values you need, which
you can then pick apart to get the individual field values. So the column formula might
be:

CustName : StreetAddress : (City + “ ” + State + “ ” + Zip) : PurchasingContact

On your form, add one hidden Computed for Display field named CustDetails, as follows:

@DbLookup(“”; “”; “CompanyByID”; CustID; 4)

(assuming the combined column is column 4). Then, you would use this formula
where you wanted to display the name:

CustDetails[1]

and so on.

Repeating a lookup on refresh
Suppose you need to look up the user's manager's name into a computed field when
composing a form, as follows:

@DbLookup(“”; “VOLE1”: “EmpData.nsf”; “EmpByName”; @Name([CN]; @Username);
“Manager”)

Computed fields are recalculated every time the form is refreshed. Many forms are
refreshed often (because you enabled the option to refresh fields on change of a
keyword field), so this can be a significant slowdown. Making the field “Computed when
Composed” would be better.

If you don't need to store the field in the document (and remember, don't store fields you
don't need to store!), then you could make it Computed for Display instead, but in that
case, do the following to avoid repeating the lookup on refresh:

 8

@If(@IsDocBeingLoaded;
 @DbLookup(“”; “VOLE1”: “EmpData.nsf”; “EmpByName”; @Name([CN];
@Username); “Manager”);
 @ThisValue)

Assignment of sequential numbers using @DbColumn
This is a frequent mistake. When designers must create a unique ID for each document,
they often do so by adding “1” to the number of the latest existing document. So they
write a formula such as this:

tmp := @DbColumn(“”:“NoCache”; “”; “RequestsByNumber”; 1);
nextNumber := @If(tmp = “”; 1; @ToNumber(@Subset(tmp; -1)) + 1);
@Right(“000000” + @Text(nextNumber); 7)

This is a really bad idea. As the number of documents grows, the @DbColumn takes
longer and longer to execute. Plus, it doesn't actually guarantee a unique ID when there
are multiple users of the application, particularly if there are multiple replicas.

If the number is assigned when the document is saved, it's not available until then, which
is inconvenient. Whereas, if it's assigned when the document is composed, that allows a
lot of time for someone else to create and save a document with the same number.

You might reconsider your requirements. People often ask for sequential numbering
when, in fact, the application requires only a unique identifier that need not be numeric.
Look into the @Unique function, which generates a reasonably short value that's almost
certain to be unique (uniqueness can be guaranteed with a little extra work, for example,
by assigning each user a unique "suffix", often their initials).

If you decide that sequential numbers are actually required, see the developerWorks
article, Generating sequential numbers in replicated applications, for one way to do it
reasonably efficiently. Look for more on this subject in an upcoming developerWorks
article.

5 Form design
In this section we address some common problems worth noting.

5.1 Don't use Computed fields if Computed for Display works
Since storing fields slows up the application generally, it makes sense to avoid storing
values if you can easily calculate them when needed. There's a tradeoff here; a
Computed field isn't calculated when the document is opened in read mode, so if it's a
slow formula, it's better to store it, to improve read mode performance (on the other
hand, that also means it can be out of date).

But definitely never have a Computed field that simply redisplays the value of another
field – in which case you're then storing two copies of the same information.

5.2 Hundreds of fields
The most common reason for large numbers of fields on a single form is that there's a
table with multiple rows and columns of information, and a field in each cell, up to the

 9

http://www.ibm.com/developerworks/lotus/library/ls-sequential_numbers/

maximum number of rows you support. This is a tough situation, because this is by far
the easiest way to provide this functionality.

There are, however, alternate ways to manage tables of values. The most obvious is to
actually put a table in a rich text field and let users fill in whatever they want (use
@GetProfileField in the rich text field's default formula to read a “starter” table from a
profile document). The drawback is that the user gets no help filling in the cells, such as
you could provide with keyword lists, translations, and validations if there were individual
fields. But sometimes this is an acceptable alternative.

There are also some published tools and techniques for editing tables one row at a time
in a dialog box and displaying the results in a table. For example, the Domino Design
Library Examples in the Lotus Sandbox contain a set of design elements that can be
used to edit and display data in tables, without having a field for each cell. The system is
described in detail in the document titled “Table Editor” in the Documentation database.
It takes some work to implement, but it does wonders for performance.

Sometimes we see forms containing many fields that are left blank in most documents.
For instance, perhaps 5% of your documents need a “regulatory approval” section
containing 50 fields. In the other 95%, you're wasting space and causing poor
performance by storing all these blank fields.

It would be better in such a case to have two different forms – a main form with the fields
that are always needed, and a separate “Regulatory Approval” form, which might be a
response to the original document, and only created when required. This is a case in
which it's better to have some extra documents, to avoid having many extra fields.

Don't forget about multivalued fields. Rather than having five fields that let the user enter
up to five separate values, use one field that allows multiple values. Then there is no
limit to the number of entries (unless you choose to impose one), and the resulting
values are much easier to use in views and formulas.

NOTE: If an application is already slow due to having too many fields, editing the
design elements alone does little to speed it up; you must also write agents to go
through existing documents and delete the extra items already in them. There are
Business Partner products available that make this simple. If, however, your change
is a major reorganization, such as moving some fields onto a special response
document, these agents may be fairly complex. It saves time to think ahead and do it
right the first time.

5.3 Excessive graphics
Some forms go hog-wild with graphics, using large bitmaps for the background and
many decorative doodads. Large images take time to load, take up memory in your
design element cache, and take time to draw when you view the form. A little care when
creating the form can yield a professional appearance without paying a big price in
performance. Here are some tips:

• Never paste an image onto the form; instead, either use an image resource design

element or import the image. If you plan to use the same image on multiple forms, an
image resource makes sense because it lets your client cache the image separately
from the form design. Even if you don't plan to use the same image in multiple forms,
it's nice to make it an image resource, because you never know whether someone

 10

http://www-10.lotus.com/ldd/sandbox.nsf/0/816d64935ee8842485256c680051b592?OpenDocument
http://www-10.lotus.com/ldd/sandbox.nsf/0/816d64935ee8842485256c680051b592?OpenDocument

later will want to create another form with the same image.

• Never scale an image down to the size you want after placing it on the form. Use a

graphics editor (for example, GIMP) to scale the original large image to the size you
require – even if this means you need multiple image resources of the same image in
different sizes.

While you're at it, if the image is a JPEG, try different compression settings to see
whether you can reduce the size of the file. JPEG compression is “lossy,” so the
image will not be as true to the original if you do this, but if you compress it as much
as you can without a visible loss of quality, your form will load faster. There are tools
for purchase that can help you find this balancing point.

• Use the correct file format for your images. If the image uses a limited palette – like

most logos – GIF format will usually produce the smallest file. If it's a full-color photo
or painting, JPEG is usually best. Never use BMP files as they're generally not
compressed at all.

• Table cells and graphic cell backgrounds take time to draw. Hidden cell borders

render faster than visible borders, particularly borders with 3-D effects. Tables with
merged cells render faster than tables nested inside other tables.

5.4 Stored forms
Don't use stored forms. Just don't.

5.5 Automatically refresh fields
The form option “Automatically refresh fields” should be used rarely. It makes the form
refresh quite often during editing, causing delays as computed fields and input
translation formulas are recalculated. It's generally better to use the field-level option
“Refresh on keyword change”, or the field events Onchange or Onblur, to cause a
refresh only as needed.

5.6 Too many shared design elements
Forms can pull information from several other design elements, like image resources,
shared fields, shared actions, subforms, outlines, stylesheets, and script libraries. It's
quite possible that opening one document will read information from a dozen design
elements besides the form, which takes time. The advantage of shared design elements
is that they make the application easier to maintain. The disadvantage is that accessing
multiple notes at load time takes longer.

Lotus Notes maintains a cache of design information, so the design information doesn’t
need to read from the original design elements every time; however, initial load time can
be a concern. Caching also means that using shared design elements can aid
performance, if the same subform or image is used in many different forms.

Shared actions don't hurt performance because there's only one design note containing
shared actions, so you can include several for the price of one. Shared view columns
don't affect performance.

Due to the maintainability advantage, it’s recommended that you “un-share” design
elements only after you've tried other measures and performance still isn't acceptable.

 11

6 Views
Inefficient and unnecessary views cause delays due to the:

• time it takes to update the index when the view is opened.
• time it takes to retrieve information when the view is used in an @Db function.
• the Update task on the server periodically checking each view to see whether it needs

to be updated with recently modified documents. More views (or more complex views)
therefore tie up the server and slow down all applications.

Another common cause of views opening slowly are large numbers of documents in the
database. When you open a view, Lotus Notes checks whether there are any documents
modified more recently than the last update time of the view index. The more documents
you have, the longer it takes to do this test, even if the answer turns out to be “no.”

6.1 @Now or @Today in views
Much has been written about how to provide date/time-based views without using
@Today or @Now. One example is the IBM Support Web site Techdoc, Time/Date
views in Notes: What are the options?, which provides alternate ways of creating date-
based views.

Let’s now discuss a few additional points. First, the often-repeated advice to use
@TextToTime(“Today”) is incomplete. By itself, this only works for the first day. You
must do extra work to make this function correctly.

Why? Ordinarily, when you open a view, Lotus Notes looks at the “view index” – the
stored list of documents and row values in the view – and examines only the documents
created or modified since the index was last updated, to see whether they should be
added to the view, or removed, or their column values recalculated. If there were no
documents modified since the view was last used, the process is very quick.

If, however, you use @Today, the old view index is no longer useful. For instance,
suppose the selection formula is:

SELECT Status = “Processing” & DueDate <= @Today

Documents can be added to this view, even if they haven't changed, because the value
of @Today has changed since the view was last used. So every time you use this view,
Lotus Notes discards the old view index and looks at every document in the database, to
determine whether it belongs in that view and to recalculate column values.

If you use @TextToTime(“Today”) instead of @Today, you can “outsmart” the view
indexer. Congratulations. Lotus Notes will reuse the old view index and examine only
modified documents. This is faster, but unfortunately it yields incorrect results, because
when @Today changes, we must look at all the documents again.

Suppose you have a column that shows a red exclamation point if a “request” document
is still open after three hours (testing it against @Now). That situation can change, even
if the view was last used five seconds ago. With @Today, though, it would be nice to just
have the view index updated less frequently.

 12

http://www-1.ibm.com/support/docview.wss?uid=swg27003557
http://www-1.ibm.com/support/docview.wss?uid=swg27003557

You can actually do this by using the view indexing options in the view Property box. On
the Advanced options tab, you can specify that the view be updated “Auto, at most every
x hours,” where x is a number you specify. The advantage is that the view opens very
quickly. The disadvantage is that the view doesn't immediately show changes even to
documents that have been modified. The user must manually refresh the view to see the
latest data.

Another popular alternative is to create a scheduled agent that executes nightly,
updating the view selection formula (using the NotesView.SelectionFormula method) to
contain that day's selection formula. For instance, such an agent might contain the
statement:

view.SelectionFormula = {SELECT Status=“Processing” & DueDate=[} & Today & {]}

There are, however, some disadvantages to this:

• The view design change must replicate everywhere before all replicas show correct

documents.
• Server administrators may be suspicious of agents that change the design of a

production application.
• The first user to open the view the next morning still must wait for the view to index.

You can get around this by setting the view indexing option to “Automatic” or by
having your agent refresh the view.

• If the database gets its design from a template, your view will be overwritten from the
template. To avoid this, you can either arrange for the agent to run after the nightly
design refresh or make the change to the template.

Another solution is to compromise on the user interface. For instance, instead of a view
of “open requests that are overdue”, you could have “open requests by due date,” so
that the overdue requests sort at the top of the view. They're almost as easy to find
there, and the view opens much faster.

In some cases, it's appropriate to use a folder to display a group of documents based on
date criteria. A nightly agent can populate the folder with documents appropriate for that
date, and access settings on the folder can prevent users changing its contents
manually. This isn't a good choice if the folder contents should change during the day as
documents are edited (you can also manage this with custom coding, though it becomes
cumbersome).

6.2 Unnecessary views
Many applications are slow because they contain many views, and any you can remove
will help. The effect is on server performance generally, rather than on the specific
application.

NOTE: The designer of the database doesn't necessarily have access to see every
view. Users' "Server private" views and other views with reader lists that do not
include the developer are invisible, but they still affect performance. A server
administrator can see these views using "Full access administration" mode.

The default view refresh settings (Auto after first use, Discard index after 45 days) mean
that indexes of views that are unused for 45 days are discarded and are no longer
automatically refreshed by the server. At that point their effect on performance is

 13

minimal. However, having the views in the outline means that it's likely someone will use
them occasionally by accident while searching for the right view.

You can therefore not only improve performance but also provide a less frustrating user
experience by limiting views to only those that are necessary, are designed for the users'
specific tasks, and are named so that users recognize the one they need without hunting
for it.

Frequently, views are created for some special, one-time use, and there's no process for
recording who asked for them, who's using them, and when they can be safely deleted.
Often they are “Server private” views, visible only to the person who created them – but
they still affect performance. Limiting access to create such views helps preserve
performance (if you want to see what private views are there, a server administrator can
list them using “Full access administration” mode).

We recommend using the Comment field of a view to describe the task for which it was
created, who uses it, and a “sunset” date after which it can be deleted, if known. That
way, if you have a question about whether a view is needed, you at least know who to
ask. If you want to delete a view to see whether anyone protests, cut and paste it into
another database that contains no documents, just to have a place to keep it in case you
want to retrieve it.

Often, an application contains views that are only different with respect to the way
they're sorted. Such views should generally be combined into a single view with re-
sortable columns. Although the cost of adding a re-sort column is significant, it's still less
than having a second, separate view.

This is especially true if you use the new column option in Lotus Notes 8.0, “Defer index
creation until first use.” This option delays creating the index for a re-sort until a user
requests it. This does cause a long delay for that first user, but if no one ever requests it,
everyone enjoys better performance.

6.3 Private views
When you go looking for unneeded views, bear in mind that you as a developer can't
necessarily see all the views in the application. If users have private views stored on the
server, or if there are shared views with access lists that don't include you, you will be
unable to see those views in Designer – but they still affect performance. A server
administrator using “Full access administration” mode can bypass the access controls to
get you a list of all the views (and delete any that you want to remove).

6.4 Unnecessary re-sorts
Since the server must do extra work to make alternate view sorting available
immediately on request, you should enable re-sorting only when it's actually useful.
Ascending and descending count as two separate re-sorts, so don't enable them both
unless there's a real need for both. In Lotus Notes 8.0, if you're not sure a re-sort will be
used, enable the “Defer index creation until first use” option on that column.

Note that you also have the option to make clicking a column header navigate the user
to a different view that's already sorted by that column, so you can provide the
convenience of a re-sort without the extra cost (if the other view already exists).

 14

6.5 Unnecessary columns
It's tempting to create a column for every field, but don't do it. Limit the information in
views to what the user actually needs to see there; the screen will be less cluttered and
the whole application will be faster and use less storage.

6.6 Overly complex formulas
If you have a view column formula or selection formula that uses looping functions
(@For, @While, @Transform) or is longer than, say, 200 characters excluding
comments, try to simplify it. If you can't simplify it, consider moving the formula into a
computed field on the form, so that the view can refer only to the field name. This is
especially helpful for formulas that are used in multiple views.

Even if you don't choose the computed-field route, most long formulas can be simplified
with a little thought. Consider using @Select or @Replace instead of long @If
statements, and review the logic to see whether tests can be simplified by doing them in
a different order.

Be aware of operators and @Functions that operate on all the members of a list. There's
no need to write a loop for many simple manipulations on string lists; for instance, to get
the first three characters of each element, use @Left(listfieldname; 3).

We also have “combinatoric” operators like *=, which can be used to compare every
combination of elements from two lists and which can help you write more concise
formulas.

If you've programmed in other languages, you might be accustomed to logical operators
that evaluate only those expressions necessary to determine the value of the
conjunction. For example, you might expect this:

Form = “Report” & (Sections = “Financials” | Total > 10000)

to first check whether Form is Report, and only if that is true, test the rest of the
expression. In macro language (and in LotusScript), logical operators don't work that
way. Both parts of the expression are always evaluated. So, if the second part is
expensive to evaluate, you might choose to do your own “lazy logic” formula as follows:

@If(Form = “Report”; Sections = “Financials” | Total > 10000; @False)

The function @If takes longer to execute than the & operator, but if you can use it to
avoid executing some expensive functions unnecessarily, you come out ahead.

6.7 Overuse of multiple categorization
Categories are excellent. They can let you list a document under multiple headings in
the same view, which is quite useful. But don't go overboard, because listing a document
twice in a view takes almost twice as long as listing it once. If each document is in fifty
categories, multiply by the number of documents, and how many rows must the poor
server calculate and store?

Even if you don't use multiple categories, categorized views are slower than the
corresponding view with simple sorting. The time is based on the number of rows, not
the number of documents, and each document and each category heading is a row.

 15

6.8 Overzealous indexing
The View Properties dialog box contains a set of options that controls view indexing.
These options are seldom used, but choosing an appropriate indexing option can have a
big performance payoff.

For instance, suppose a database contains special keyword documents that you
frequently look up to fill keyword lists on a form. The keyword documents change very
rarely, but other documents in the application are modified all the time.

We already know from our discussion of @DbLookup that it's best to use cache for such
a lookup, but you still must go to the view the first time when you have no cached value.
When you do that, Lotus Notes notices there are documents modified since the view
was last used and wastes time looking at those documents and finding that they aren't in
the view.

The view that you use in your @DbLookup of keyword values doesn’t need to be re-
indexed every time it's used. For such a view, it makes sense to select the indexing
option “Auto, at most every x hours,” with an appropriate value for x (see figure 2).

Figure 2. View indexing options

Such views are still updated by the server when nobody's using them, just not as often.
Occasionally, an unlucky user will “take the hit” of refreshing the index. However, the
average lookup time will be much less, and it's unlikely that any single user will incur this
cost for every lookup in a complex form, so the form will still open faster than if you didn't
use this option.

If a view is used one day every quarter for a quarterly review, there's no point in keeping
the index for 45 days. Set it to discard after two days, and you're giving the server less
work.

There are other situations in which you can improve performance by choosing an
appropriate indexing option. It's worth determining what setting is right for each of your
views.

NOTE: It is possible to refresh an index in the current replica programmatically, using
the NotesView.Refresh method. Suppose there's an index that's normally rarely
updated, but when you save a particular form that contributes data to the view, you

 16

must have the view updated so you can use the new data in lookups right away. In
the Postsave code on that form, use the Refresh method on the view. At the same
time, you could use @Db functions with ReCache, to update the cache of specific
lookups to that view.

6.9 Reader fields
There's no substitute for Reader fields if you need them, but they can make view
performance quite slow. When you open a view that contains documents with Reader
fields, Lotus Notes scans down the rows, looking for those to which you have access. It
stops looking when there are enough to fill your screen. If you have access to only one
document, it must look at every row in the view to determine this – and that could take a
while.

There are several things you can do about this:

• Use short Reader field values. It's faster to check membership in a single role than to

compare them against a long list of access names (and there are also maintainability
advantages to using roles).

• Avoid using views in such an application. If users have access to only one or two

documents, you can provide them access via other ways, for example, by sending
them an automatic email with links to those documents.

• Use an embedded single-category view that displays only the category containing

“their” documents.

• Use a categorized view that is set to display empty categories (that is, categories that

contain no documents the user can view). Of course, this can also make it hard for
the user to find their documents unless you navigate the user to them, so you might
use this in conjunction with @SetViewInfo to display only “their” category.

NOTE: There's a security impact to using such a categorized view; that is, you're
showing the user one field – the category – in documents to which they otherwise
have no access. Make sure this is OK.

• Encourage people to use local replicas. Because the local replica contains only the

documents to which they do have access, it's no extra work to eliminate those they
can't view.

Don't use Reader fields solely as a navigational aid; for instance, as a means to make it
easy for users to find “their” documents because they're the only ones in the view that
they can see. If the information in the document isn't actually private, there are better
ways to help the user find the correct ones, as described above and in the next section.

6.10 Private on first use
@UserName and @UserRoles don't yield the desired results when used in the selection
or column formulas of a shared view. This is the most common reason developers
create “Private on first use” views to show only “My Documents”. These views are either
stored on the server, in which case they affect the performance of the application
generally, or they're stored in the user's local “desktop” file.

 17

Desktop views don't affect the server's performance directly, but when someone opens
one, just like other views, it's re-indexed to show the latest changes. That means the
user's workstation must request from the server all documents modified since the last
use of the view. This can take time while the user is waiting and, if many users are doing
it, can bog down the server with numerous requests to “send all the data.”

Note that view indexing uses only the summary data, so large rich text fields and file
attachments are not an issue here.

In addition to performance issues, private views present a maintenance challenge
because there's no easy way for the developer to update the design of users' private
copies. Even shared columns don't work in this context because, to update a shared
column in a view, the person doing the update must have access to the view.

Often, you can avoid Private on first use by using the “single category” capability of
Notes views. If you are showing “My Documents,” for instance, you can use a view that
categorizes documents by owner, then either embed the view in a form or page, with a
“single category” formula, or use @SetViewInfo in the view Postopen event to limit
display to the current user. Because there's only one shared view, the indexing cost is
minimized overall, and the individual user doesn't need to wait like they would for a
desktop private view because the index is always relatively up to date.

7 Code
Once you start writing LotusScript or Java™ code, you open up a whole new world of
opportunities to create slow performance. Here we discuss some common pitfalls.

7.1 GetNthDocument
Using NotesDocumentCollection.GetNthDocument to iterate through the collection is
very slow; instead, use GetFirstDocument and GetNextDocument. There are certain
types of collections for which GetNthDocument is just as efficient, but it's easier just not
to use it.

7.2 Too much action code on a form or view
If you have many actions on your form, view, or folder, and you write the code for each
action in the design element (or even if you use a shared action), you're storing a lot of
code that must be loaded into memory each time the design element is used.

Most of the time, only one or two of your many actions will be used, so you're wasting
time loading it all. If the action appears in multiple places, you're caching that same code
multiple times in your design cache, using up memory that you might require for other
purposes.

Consider moving some action code into agents. This lets you have just one copy of the
code that is loaded into memory only when someone asks to run it. The action button
can be written in macro language to call the agent by use of @Command([RunAgent]),
so very little code must be loaded along with the design element.

This is especially important if you let users create private views or folders because that
action code will be duplicated many times in their folders, taking up space, and can't be
updated unless the user manually deletes their private view.

 18

7.3 Too many script libraries
The time required to load multiple script libraries in the same script is greater than linear.
That is, loading ten script libraries takes much longer than twice the amount of time to
load five libraries, particularly if libraries “Use” other libraries.

This might change in the future, but even so, there's a break-even point; it takes longer
to access two design elements than to access one design element containing the same
total amount of code. Combining script libraries that are often used together saves
loading time, even though in some cases you may be including code you won't call in the
specific agent.

7.4 ComputeWithForm
The ComputeWithForm method of NotesDocument is an easy way to update computed
fields in a document without having to duplicate code. Unfortunately, it's also rather slow
compared with “manually” calculating and assigning the new field value. If your agent is
slow and you're using ComputeWithForm, you can probably speed it up considerably by
taking that call out and putting in a few lines of code to assign specific fields.

7.5 Auto-update views
By default, when you use a NotesView object, it implements the normal index refresh
attributes of the view. For example, suppose you're updating a collection of “Vegetable”
documents, and as part of the processing you must look up the pests for that vegetable
in the “Pests” view of the same database. But when you save a Vegetable document,
now a document has been modified.

As you process the next document and do a lookup to the “Pests” view, Lotus Notes
notices that the view index is out of date and refreshes it. You know that the change you
made doesn't affect the Pests view, but Lotus Notes doesn't know this until it tests the
changed document.

It makes sense in this case to use the AutoUpdate property of NotesView to tell Lotus
Notes not to bother updating the view index, unless you explicitly request it by using the
Refresh method. This makes a substantial speed difference.

You can also use this method even if the changes you're making do affect the contents
of the NotesView, provided you know the changes won't matter to whatever you're
doing. For instance, you know that your update will remove the document from the view,
but it doesn't matter because you're on to the next document.

7.6 Failure to use efficient collection-based methods
The NotesDocumentCollection class has a few methods whose names end in “All,”
which give you a way to do things to all documents in the collection. Familiarize yourself
with these methods, because they are a lot faster than iterating through the collection
and operating on each document individually. (Unless, of course, you need to do
multiple things to each document; then it's probably faster to iterate so that you save
each document only once.)

7.7 Repeating expensive operations
Certain methods and properties in the built-in classes are fairly slow. Your code will run
faster if you avoid using these functions repeatedly when you don't need to. For

 19

instance, suppose that as you process a collection of documents, for each document
you must use one of its fields as a lookup value to pull information from another view:

Dim view As NotesView
Set docCur = coll.GetFirstDocument
Do Until docCur Is Nothing
 Set view = db.GetView(“CustomersByID”) ' oops! Don't do this in the loop!
 Set docCust = view.GetDocumentByKey(docCur.CustID(0), True)
...
 Set docCur = coll.GetNextDocument(docCur)
Loop

In this code sample, if coll contained 1000 documents, we called the expensive GetView
method 1000 times. The code will be much faster if we just swap the positions of the Do
Until and Set view lines, so that GetView is called only once.

The agent profiler is a good way of finding things like this. It is described in the
developerWorks Lotus articles, Troubleshooting application performance: Part 1:
Troubleshooting techniques and code tips, and Troubleshooting application
performance: Part 2: New tools in Lotus Notes/Domino 7.

7.8 Saving documents that have not changed
Recall that one of the factors affecting performance is “churn”, that is, how often
documents are modified. When you write agents to process documents, try to avoid
saving changes to the document unnecessarily. Before you assign an item, check
whether the item already has that value. If you don't end up changing anything, don't call
the Save method. Often, you can use the search methods to filter out documents from
your collection that you don't need to process.

The agent might take a little longer to run if you're constantly checking items to
determine whether they need to be changed. Or, it might not, because it takes much
longer to save a document than to compare information in memory. But in any case,
other parts of your application will work more efficiently, from replication to view indexing
to full-text indexing.

Avoiding unnecessary saves also reduces the chance of causing replication conflicts.
Replication uses item modification times; it doesn't send an entire document to the other
replica, only those items that have changed. So even if you must save a document
anyway, it saves you time on replication if you have modified only those items that
needed to have a new value. Your users with local replicas will be grateful.

7.9 Ways of searching for documents
One thing most agents must do is locate a set of documents to process. There are
different ways of doing this, each of which is appropriate for different situations.

The developerWorks Lotus article, Lotus Notes/Domino 7 application performance: Part
1: Database properties and document collections, discusses different ways of searching
for and processing collections of documents. In summary:

• If you have a view that contains the documents you want, sorted in a useful way, it's

usually fastest to read the documents from the view, for example, by using the

 20

http://www.ibm.com/developerworks/lotus/library/app-troubleshooting1/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/app-troubleshooting1/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/app-troubleshooting2/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/app-troubleshooting2/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/notes7-application-performance1/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/notes7-application-performance1/?S_TACT=105AGX13&S_CMP=LP

GetAllDocumentsByKey method.

• For databases containing large numbers of documents, the FTSearch methods are

faster than NotesDatabase.Search, provided your database is full-text indexed. Note
that you can also do a full-text search by entering it in the Document Selection event
of an agent.

In both these cases, you're saving time by taking advantage of indexing work that's
already been done by the server in advance. So there's less work to do at runtime,
compared with NotesDatabase.Search, which must test every individual document.

The full-text search doesn't let you filter documents to quite the level of detail that
NotesDatabase.Search does, but it usually saves enough time that you can afford to
iterate through the search results and skip over the few that don't apply. Learn the
complete full-text query syntax, which is documented in the Notes Client help (not the
Designer help), under the heading “Refining a search query using operators.” You may
find you can do much more with it than you thought.

NOTE: Depending on your requirements, you can sometimes combine the power of
formula search and the performance of full-text search by doing a full-text search in a
view, which has formula-based selection criteria.

7.10 Deleting unused documents from cache
In earlier versions of Lotus Notes, you could get better memory usage by deleting
NotesDocument objects from memory when you were done with them, using the Delete
statement. However, with versions 6.0 and later, this is no longer worth doing. (If you
know what this is referring to, don't bother doing it anymore. If you don't know, don't
worry about it.)

You might still use Delete for reasons other than performance, for example, because you
think the document will have been modified by another process since you last opened it
and you want to ensure you're reading the latest data.

7.11 More efficient loops, assignments, etc.
Some of the literature offers comparative timing for “for” versus “while” loops, global
versus stack variables, and so on. However, unless your application is especially
compute-intensive, you're unlikely to see much performance improvement from these
things.

Most scripts spend far more time opening documents and views than manipulating
variable values. Avoiding an unnecessary array reference might save you a millionth of a
second; whereas, an unnecessary view open may be more on the order of whole
seconds. If you're going to put time into improving performance, begin with the big-payoff
items.

It can be useful to know about performance characteristics of different LotusScript
expressions and statements, but it’s more valuable to build good habits when writing
code originally; it rarely pays to go back later and fix inefficient assignments.

The only tips in this area we consider worthwhile are:

 21

• Don't use GetNthDocument (as discussed above)
• Declare variables explicitly, to avoid the default Variant type. This not only provides

better performance, but also helps you find errors sooner – at compile time. Use the
option in the programming pane properties that has the Option Declare statement
inserted automatically in your LotusScript code.

7.12 Using the LC LSX
If you're integrating with outside relational databases or data files, the LC LSX API is
typically faster than the built-in ODBC classes. The IBM Redbooks publication,
Implementing IBM Lotus Enterprise Integrator 6, contains much information about how to
program with this API and how to maximize its performance.

8 Testing
As mentioned at the start of this paper, many nice little applications that work great with
a small data set and a few users rolls over and plays dead when you give it many
documents and many users. It makes sense to test your design with large numbers of
documents, and test what happens when 50 people use it at once (in case you don't
happen to have 50 friends with time on their hands, there are automated testing tools
available that can simulate this situation).

Also, it’s not difficult to write agents to take a small set of sample data and multiply it into
many thousands of documents by assigning random values to selected fields. This can
even be done with formula agents, if you use the agent option to create new documents
(in the lower right-hand portion of the agent editing screen).

A word of warning, though: If you're testing an application that's already in production, do
your testing in a copy of the database (not a replica) on a non-production server, and
preferably one that doesn't replicate with the production servers. That way, you run no
risk of contaminating the production data, nor will you crash or bog down the server
people are using to get their work done.

9 Use Profile documents
Profile documents are a good way to efficiently store and retrieve information that
doesn't change often. Because the entire document is cached the first time it's used, it's
quite efficient to store all your customizable keyword lists there. There are no issues of
view indexing, and no need to worry about controlling caching. They replicate just like
regular documents (except that users with replication selection formulas can't
accidentally break your application by excluding them, so they are better than “regular”
keyword documents in that way also). Just use them. They're fun and easy.

10 Conclusion
This white paper, over-long though it may be, is not comprehensive. The Resources
section below provides additional useful information and techniques. It’s also advisable
to keep up with the various Lotus-oriented blogs and wikis, which frequently have
performance-related tips.

 22

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246067.html?Open

11 Resources
• The IBM Redbooks publication, Performance Considerations for Domino

Applications (March 2000) is the canonical resource for performance issues. It's
somewhat dated but is still quite relevant.

• The developerWorks Lotus article, Lotus Notes/Domino 7 application performance:

Part 1: Database properties and document collections, discusses different ways of
searching for and processing collections of documents.

• The developerWorks Lotus article, Lotus Notes/Domino 7 application performance:

Part 2: Optimizing database views, examines indexing times for different types of
views and discusses how to reduce the performance impact of Reader fields.

• The developerWorks Lotus articles, Troubleshooting application performance: Part 1:

Troubleshooting techniques and code tips and Part 2: New tools in Lotus
Notes/Domino 7, discuss how to determine what part of an application is causing a
slowdown.

• The developerWorks Lotus article, Application Performance Tuning, Part 1, goes into

greater detail on database properties affecting performance, and how to cause view
indexing times to be logged.

• The developerWorks Lotus article, Application Performance Tuning, Part 2, is

primarily about increasing performance by avoiding unnecessary computation.

• The IBM Support Web site Techdoc, Time/Date views in Notes: What are the

options?, provides alternate ways of creating date-based views.

• The IBM Business Partner piece, Performance Engineering Notes/Domino

Applications, covers some of the same material covered here, with some
comparative measurements of exact effects of more documents and more fields.
Some tips specifically for Web applications are also included.

• This Lotus Sandbox download contains an agent called Replicate Customers, which

demonstrates an algorithm for doing one-way synchronization without deleting and
re-creating every document.

• The developerWorks Lotus article, Generating sequential numbers in replicated

applications, describes one technique for getting a sequential number across
multiple replicas.

12 About the author
Andre Guirard is a member of the development team for the Domino Designer. A long-
time Notes developer, Andre now focuses on developer enablement. He has written
many technical articles for developerWorks, The View, and other publications; is an IBM
Redbooks contributor; and owns the developerWorks blog, Best Practice Makes Perfect.
He often speaks at Lotusphere and other IBM conferences. In his free time, he is the
Labor Pool for his wife's gardening projects, and writes science fiction and fantasy
stories.

 23

http://www.redbooks.ibm.com/abstracts/sg245602.html?Open
http://www.redbooks.ibm.com/abstracts/sg245602.html?Open
http://www.ibm.com/developerworks/lotus/library/notes7-application-performance1/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/notes7-application-performance1/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/notes7-application-performance2/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/notes7-application-performance2/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/app-troubleshooting1/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/app-troubleshooting1/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/app-troubleshooting2/?S_TACT=105AGX13&S_CMP=LP
http://www.ibm.com/developerworks/lotus/library/app-troubleshooting2/?S_TACT=105AGX13&S_CMP=LP
http://www-128.ibm.com/developerworks/lotus/library/ls-AppPerfpt1/?S_TACT=105AGX13&S_CMP=LP
http://www-128.ibm.com/developerworks/lotus/library/ls-AppPerfPt2/?S_TACT=105AGX13&S_CMP=LP
http://www-1.ibm.com/support/docview.wss?uid=swg27003557
http://www-1.ibm.com/support/docview.wss?uid=swg27003557
http://www.martinscott.com/struturo.nsf/ID/tech_articles_perf_engr
http://www.martinscott.com/struturo.nsf/ID/tech_articles_perf_engr
http://www-10.lotus.com/ldd/sandbox.nsf/ecc552f1ab6e46e4852568a90055c4cd/783ff1dd8e1ee7f285256e120050e252?OpenDocument
http://www.ibm.com/developerworks/lotus/library/ls-sequential_numbers/
http://www.ibm.com/developerworks/lotus/library/ls-sequential_numbers/
http://www-10.lotus.com/ldd/bpmpblog.nsf

13 Acknowledgements
The author extends his thanks to John Curtis and the business partners who helped
technically review this white paper.

Trademarks

• DB2, Domino, IBM, Lotus and Notes are trademarks or registered trademarks of IBM
Corporation in the United States, other countries, or both.

• Java and all Java-based trademarks and logos are trademarks or registered trademarks of

Sun Microsystems, Inc. in the United States, other countries, or both.

• Other company, product, and service names may be trademarks or service marks of others.

IBM copyright and trademark information: http://www.ibm.com/legal/copytrade.phtml

 24

	1 Introduction
	2 General principles
	3 Database-level performance considerations
	4 Formula performance
	4.1 @DbLookup and @DbColumn

	5 Form design
	5.1 Don't use Computed fields if Computed for Display works
	5.2 Hundreds of fields
	5.3 Excessive graphics
	5.4 Stored forms
	5.5 Automatically refresh fields
	5.6 Too many shared design elements

	6 Views
	6.1 @Now or @Today in views
	6.2 Unnecessary views
	6.3 Private views
	6.4 Unnecessary re-sorts
	6.5 Unnecessary columns
	6.6 Overly complex formulas
	6.7 Overuse of multiple categorization
	6.8 Overzealous indexing
	6.9 Reader fields
	6.10 Private on first use

	7 Code
	7.1 GetNthDocument
	7.2 Too much action code on a form or view
	7.3 Too many script libraries
	7.4 ComputeWithForm
	7.5 Auto-update views
	7.6 Failure to use efficient collection-based methods
	7.7 Repeating expensive operations
	7.8 Saving documents that have not changed
	7.9 Ways of searching for documents
	7.10 Deleting unused documents from cache
	7.11 More efficient loops, assignments, etc.
	7.12 Using the LC LSX

	8 Testing
	9 Use Profile documents
	10 Conclusion
	11 Resources
	12 About the author
	13 Acknowledgements

